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Conditional Least Squares Polynomial 
Approximation 

By R. W. Klopfenstein 

There are many motivations for the development of least squares polynomial 
approximations to sets of data. If the data is empirical, the motivation may be the 
smoothing out of empirical errors to obtain a representation superior in accuracy 
to the original data. Or if the data is in principle exact, the motivation may be to 
obtain a compact approximate representation for the data. In the case of data having 
widely variable character, it is often expedient to segment it and produce distinct 
polynomial representations in different ranges of the independent variable. 

In many cases, it is necessary to introduce constraints on the least square ap- 
proximation problem. These may occur, for examiiple, in connection with data for 
which certain properties are known exactly from the underlying physical or mathe- 
matical model. They miay occur also where data is to be fitted in several separate 
ranges and it is desired to preserve certain continuity properties from one segment 
of the representation to the next. 

When the least square polynomials are being provided via the normal equations 
[1], it is often reasonably straightforward to solve the constraint equations ana- 
lytically for one or more of the undetermined coefficients and insert these into the 
set of linear algebraic normal equations. Use of the normal equations is, however, 
extremely wasteful of both storage and computing time. In addition, the normal 
equations are notoriously poorly conditioned so that one is rarely successful in 
producing least square polynomials beyond the fifth or sixth degree with single 
precision calculations. 

The least squares algorithm via orthogonal polynomials [2] is vastly superior in 
almost every respect. This is especially true when the Lanezos three-term recursion 
[3] is incorporated in the process. In this case, if the resulting polynomial is to be 
used solely for function evaluation purposes, it is not even necessary to produce 
the explicit resulting polynomial with the inherent resulting rounding problems. 

It is the purpose of this note to describe a simple transformation that will 
permit the solution of the least squares approximation problem subject to a class 
of constraint conditions. This transformation results from the generalization of an 
approach suggested by Hamiming [4]. The transformed problem is of standard 
least squares type without constraints and may be solved through standard al- 
gorithms for this purpose. 
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We consider a set of datum points and associated weights {Xk, yk, wk}, and 
require that the sum 

(1) SN = Z 
WYkY 

- QN(Xk)}2, 
k=1 

be minimized where QN(X) is a polynomial of Nth degree and there are 1 prescribed 
constraints on QN(X) at one or more points xj of the form 

(2) QN(r) (Xj) = brj X r = 0, 1, , Rj. 

The xj may be points on which the data is specified, Xk, but are not necessarily 
these. It is to be noted that all of the bri must be specified. We define P-1(x) to be 
the polynomial of (1 - 1)st degree satisfying these constraint conditions and set 

(3) QN(X) = Pl1](X) + HII(X)QN_I(X), 

where 

IJl(X) = H (X - Xj)l+Ri. 
j=1 

We now minimize the sum 
m 

(4) SN = Z Wk{ Yk' - QN-1(Xk )12) 
k=1 

where 

Yk 
Yk Pl-1 (Xk) and Wk' 

= 
WkHj 

I 
(Xk)I 

I11(Xk) 

The QN(X) so obtained satisfies the constraint conditions (2) by definition. Direct 
substitution shows that the minimization problem (4) is equivalent to that of 
(1). If any of the xj are identical with one of the data points, Xk, these points are 
eliminated from both (1) and (4) since the constraint conditions (2) impose a 
fixed contribution to SN corresponding to these points. Therefore, the problem of 
zero divisors in (4) does not arise. 

It may be appropriate to exhibit a few specific examples of the above. Suppose 
first that we have a set of data from experiment and it is known from the physical 
problem that the function represented must be zero when the independent variable, 
x, is zero. In this case, 

Po(x) 0, 

1, (x) =x 

(5) Yk 
k 

X and 

/2 
Wk =WkXk. 

If the fitting polynomial is constrained to take on prescribed values at the two 
end-points, 
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QN(X1) = bi 

QN(Xm) = bin, 

we have 

Pi (x) bi(x - xm) - bm(x - xi) 
(6) Xi - Xm 

II2(x) = (X - X) (X - Xm), 

and the end-points are eliminated from the sum in (4). 
If the fitting polynomial is constrained to have a specified value, a, and slope, 

b, when the independent variable is zero, then 

Pi(x) = a + bx, 

72(x) =Y 

Yk Y- and 

/ 4 
Wk WkXk. 

The utility of the above in segmented curve fitting is apparent. Having ob- 
tained an approximating polynomial in the first range of the independent variable, 
we may require the approximating polynomial for the second range to agree with 
that of the first at the point where transition between representations is to occur. 
We may, indeed, require continuity of one or more derivatives at this point and/or 
agreement on more points if desired. 

An effective technique for producing polynomial approximations for mathe- 
matical functions is to normalize the range of the independent variable to [-1, 1] 
and then do a least squares approximation over the values of the independent vari- 
able corresponding to the zeros of a Tschebycheff polynomial of suitable degree [5]. 
This produces a nearly optimal polynomial approximation over the range. In some 
cases, criteria other than minimum absolute error may be relevant. Consider, for 
example, the approximation of 

(8) y = sin(4x) 1 x < 1. 

In addition to minimizing the absolute error we may want to retain significance 
(small relative errors) in the vicinity of zero argument. This may be accomplished 
by adding the constraints 

y(O) = 0, and 

(9) y'(0) = 

This is readily accomplished through the transformations indicated in (7). 
In summary, a simple transformation has been described which permits the 

adding of constraints to the least squares approximation problem. The transformed 
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problem is again of standard least squares form. Flexibility in the application of 
least squares techniques is therefore substantially enhanced. 
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Improved Asymptotic Expansion for the 
Error Function with Imaginary Argument 

By D. van Z. Wadsworth 

The well-known asymptotic approximation to the error function can be mark- 
edly improved, for the case with imaginary argument, by adding a simple correction 
term as shown below. The improved analytic approximation was needed in connec- 
tion with the analysis of spacecraft and ICBMI re-entry trajectories. 

By definition* the error function with imaginiary argument ix where x is real is 

rx i 1/2 

(1) erf (ix) =i e 
e2 ds = 

f t"2e' dt t- eJ t'12et dt- 

The branch cut for t-F"2 extends along the negative imaginary axis of the t plane 
and the Riemann sheet is chosen for which t-I12 is positive on the positive real axis. 
The path of integration L goes from - oo to x2 as shown in Figure 1. Repeated 
partial integration of the infinite integral yields -i erf (ix) = En(x) + en(x) 
where 

-1 x2 n 

(2) En(x) =x e ZE r2m 
2 0 

is the asymnptotic approximation for the interval (n - ') < X2 < (n + 2) and 

(3) en(x) = 24? f ( A t et dt + 2 7r 

is the error of the asymptotic approximation. The coefficient r" = 2-2n(2n)!/n!. 
The integral in equation (3) is equivalent to a line integral on the segment 

[-c, -x2] and an integral on the semi-circle joining -x2 and x2. If we let 
x2 exp (ir - iso) = t in the latter integral we obtain 

I t n-31let dt = (-)fl1x2fl1f exp [-x2 cos s + iX2 sin ' + i(n + 2)(p] dp 
( 4 ) 0f + (_) n+ i 1tn32 e- dt. 
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